Approximation algorithms for homogeneous polynomial optimization with quadratic constraints

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation algorithms for homogeneous polynomial optimization with quadratic constraints

In this paper, we consider approximation algorithms for optimizing a generic multi-variate homogeneous polynomial function, subject to homogeneous quadratic constraints. Such optimization models have wide applications, e.g., in signal processing, magnetic resonance imaging (MRI), data training, approximation theory, and portfolio selection. Since polynomial functions are nonconvex in general, t...

متن کامل

Approximation Bounds for Quadratic Optimization with Homogeneous Quadratic Constraints

We consider the NP-hard problem of finding a minimum norm vector in n-dimensional real or complex Euclidean space, subject to m concave homogeneous quadratic constraints. We show that a semidefinite programming (SDP) relaxation for this nonconvex quadratically constrained quadratic program (QP) provides an O(m) approximation in the real case, and an O(m) approximation in the complex case. Moreo...

متن کامل

Deterministic approximation algorithms for sphere constrained homogeneous polynomial optimization problems

Due to their fundamental nature and numerous applications, sphere constrained polynomial optimization problems have received a lot of attention lately. In this paper, we consider three such problems: (i) maximizing a homogeneous polynomial over the sphere; (ii) maximizing a multilinear form over a Cartesian product of spheres; and (iii) maximizing a multiquadratic form over a Cartesian product ...

متن کامل

Improved approximation bound for quadratic optimization problems with orthogonality constraints

In this paper we consider the problem of approximating a class of quadratic optimization problems that contain orthogonality constraints, i.e. constraints of the form X X = I, where X ∈ Rm×n is the optimization variable. This class of problems, which we denote by (Qp–Oc), is quite general and captures several well–studied problems in the literature as special cases. In a recent work, Nemirovski...

متن کامل

Approximation Algorithms for Discrete Polynomial Optimization

In this paper, we consider approximation algorithms for optimizing a generic multivariate polynomial function in discrete (typically binary) variables. Such models have natural applications in graph theory, neural networks, error-correcting codes, among many others. In particular, we focus on three types of optimization models: (1) maximizing a homogeneous polynomial function in binary variable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 2010

ISSN: 0025-5610,1436-4646

DOI: 10.1007/s10107-010-0409-z